

Successful on-site Trigeneration - The German Experience -

Dipl.-Ing., Dipl.-Wirtschaftsing. Michael Geißler

Berliner Energieagentur GmbH

Workshop on Trigeneration Technology - Promotion of Energy Efficiency in Indian Building Sector

> Federation House, New Delhi 26 August 2013

Contents

- BEA Facts and Figures
- German energy policy
- Cogeneration / Trigeneration
- Overcome Challenges to Implementation
- Information / Energy services
- Lessons learned
- Conclusions

BEA – Facts and Figures (1)

Foundation

in 1992 as Public-Private Partnership

Shareholders

Federal State of Berlin

- Vattenfall Europe
- GASAG
- KfW Banking Group

Disposes of

2.5 million € of capital stock

Annual Turn-Over

approx. 6.5 million € 370 K€ Company earnings (EBIT)

Know-how 50 members of staff

Energy Services

- Contracting
- Consulting
- International Know-How Transfer

BERLINER

nergie Agentur

Based in

Französische Straße 23 10117 Berlin Phone: (030) 29 33 30 - 0 e-mail: office@berliner-e-agentur.de Internet: www.berliner-e-agentur.de

BEA – Facts and Figures (2)

Energy Services

Consulting:

Advice on all aspects of efficient energy use for customers from industry and commerce as well as the housing, service and public sector

Contracting:

Planning, financing, construction, and operation of CHP and heat stations, of special supply components such as emergency power, cooling energy (Trigeneration) and compressed air, solar energy as well as lighting systems

International Know-how Transfer:

Transfer of successful models of efficient use of energy and of the deployment of renewable energy to developing markets

Generation Data

- at about 100 sites in the region of Berlin
- 63 CHP-units (incl. 5 micro-CHP), annual electricity generation ca. 15,000 MWh
- direct electricity supply for around 3.500 households in Berlin
- CO₂ savings of more than 6,000 t/a

BERLINER

gie AGENTUR

German Energy Policy - Energy Efficiency

Energy policy targets of Federal Government

- Security of supply
- Economic viability
- Environmental and climate compatibility

Policy targets until 2020

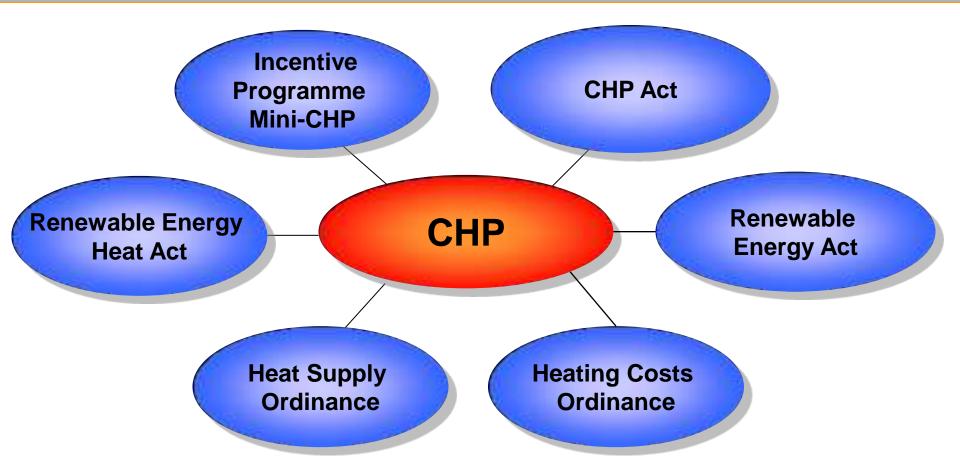
- Reducing CO₂ emissions by 40%
- Increasing RES' share of electricity production to 25-30%
- Doubling CHP's share of power generation to 25%
- Increasing RES' share of heat production to 14%

BERLINER *nergie* Agentur

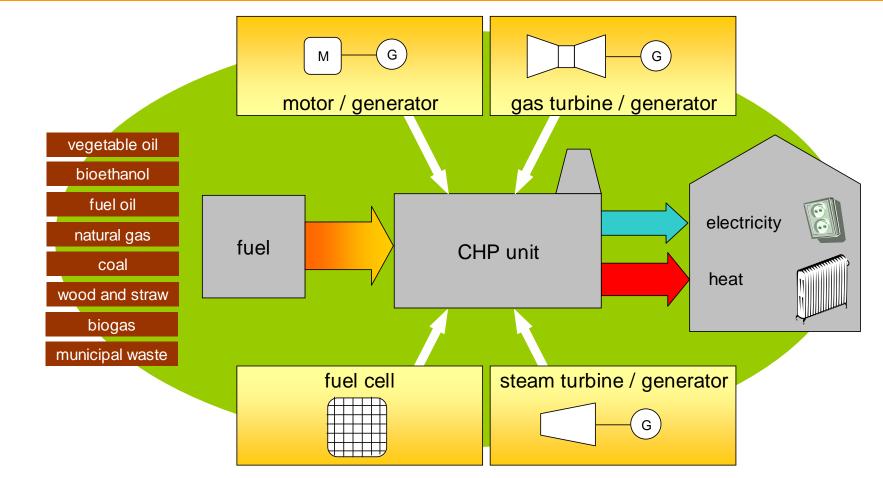
German Energy Policy - CHP

Increasing CHP's share of power production to 25% until 2020

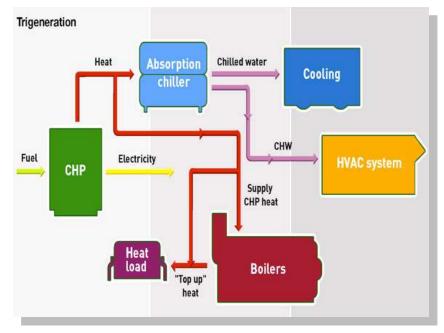
- Currently 16% share of power production
- Support the expansion of district heating and cooling networks as well as the use of heat storage units


Current areas of application:

- District heating
- Industrial process heat
- Heat supply to residential buildings, hospitals, etc.
- Increased potential through the production of heat and cold


German Energy Policy - Legal and Funding Framework for CHP

Cogeneration / Trigeneration - Basic Principles (Cogeneration)



Cogeneration / Trigeneration - Basic Principles (CHP Cooling)

- trigeneration units can produce cooling energy for air conditioning or industrial purposes
- "thermal compressor" powered by heat absorption chillers provide energy for cooling systems with far less electricity
- main advantage: best way to use waste heat
- up to over 50% less of primary energy needed compared to compression refrigerating production
- But higher investment costs compared to compression chiller units

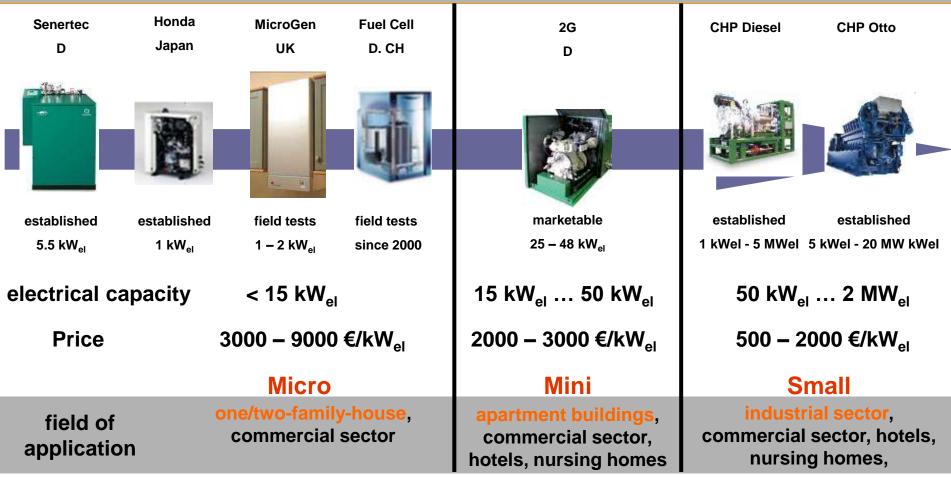
source: cesenergy, 2010

economical use depends on concrete business conditions

Cogeneration / Trigeneration - Potential Users

- hospitals and health facilities
- hotels, cinemas and hospitality venues
- industrial facilities
- > agricultural / food industry
- > government offices
- > multi-dwelling residential
- educational facilities
- commercial
- public utilities

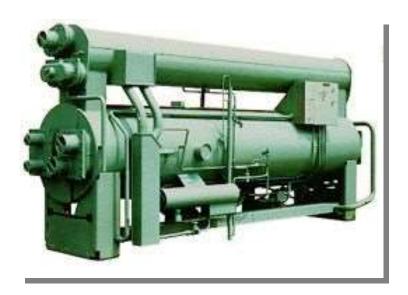
BERLINER


gie AGENTUR

Cogeneration - Customized Energy Supply for Each Individual Consumer

Trigeneration - Technical Options for Absorption Chillers

- Capacity: 15 ... 5,000 kW cold
- Temperatures: Cold water: 5 ... 20 °C


Cooling water: 21 ... 30 °C

Heating medium: > 75 °C

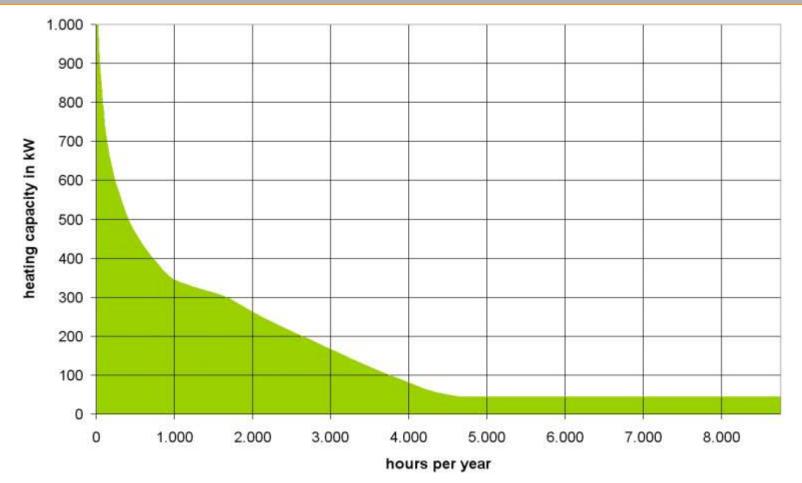
Size: 2.0 x 1.0 x 0.75m (35 kW)

9.2 x 2.5 x 4.3 m (5,000 kW)

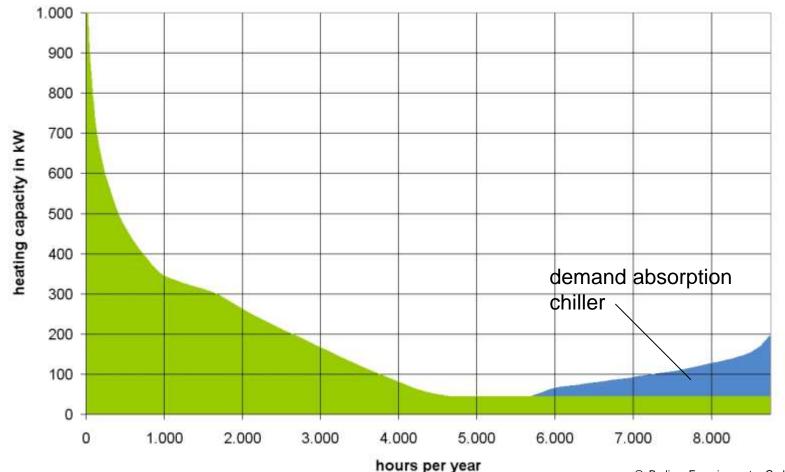
Price: 200 – 1500 €/kW_{cooling}

Source: YORK Deutschland GmbH

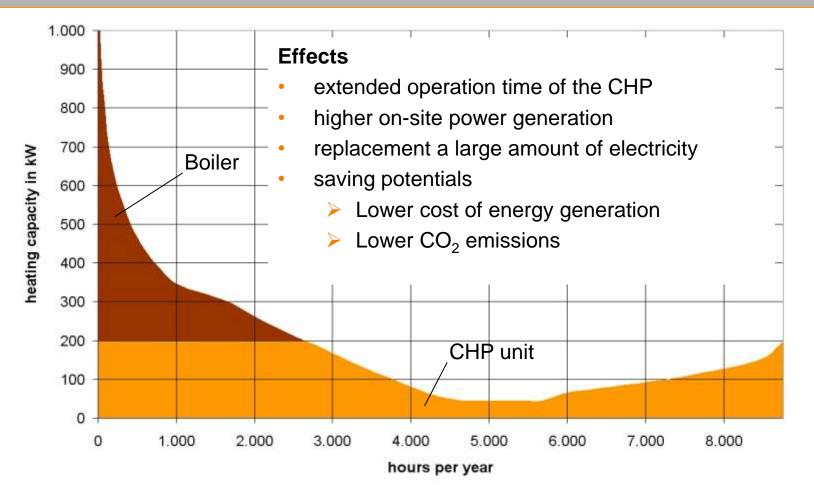
Trigeneration - Key facts


- Proportion heating capacity vs. Cooling capacity approx. 1.3:1
- Important: Absorption chillers require more space than a compression chiller (more components, larger cooling tower, connection to heating, airconditioning system and electricity grid)
- Waste heat with a temperature from 70 to 100°C for heating applications available.

Absorption chillers may provide capacities for air conditioning as well as for process cooling. Temperature levels below 0°C may be achieved.



Trigeneration - Demand for space heating and hot water



Trigeneration - Demand for space heating, hot water and cooling

Trigeneration - Covering of the Heating Demand

BERLINER

nergie Agentur

Trigeneration - Case study: Potsdamer Platz

- 3 absorption chillers in combination with the local DH-system
- District cooling system: 7.5 km main length
- Total cooling capacity: 36.6 MW, ca 46,000 MWh/a
- Absorption chillers: 7.5 MW, ca. 9,400 MWh/a cooling production
- DH-heat: 11.25 MW, ca. 12,500 MWh/a
- \succ CO₂ saving potential: up to 3.000 t/a

Trigeneration - Case study: Munich Airport, Germany

- 2 natural gas operated CHP units
- > 7.44 MW electricity
- 8.7 MW heat
- Absorption chiller unit: 5.3 MW
- Supply buildings and hangars, 5 MWe of emergency power can be made available within 15 seconds
- Commissioning: 2003

BERLINER

TELE AGENTUR

Source: MWM GmbH

Trigeneration - Case study: Technology Center Nordenham

- CHP-unit, boiler, absorption chiller and water chiller
- ➢ 5,5 kW_{el} electricity
- > 812 kW_{th} heat
- ➢ 655 kW_{th} cold
- Air conditioning to meet specific temperature requirements for Carbon-fiber-reinforced polymer processing

Source: EWE GmbH

BERLINER *nergie* Agentur

Overcome challenges to implementation - Information

CHP Pilot City Berlin

Starting position: Berlin – CHP hot spot

- \rightarrow 42 % of power consumption (No 1 in Germany)
- 1,500 km district heating grid (No 1 in Western Europe)

Need for action: Knowledge and interest

- Sensitize all relevant stakeholders
- → Initiate interest in innovative CHP energy solutions

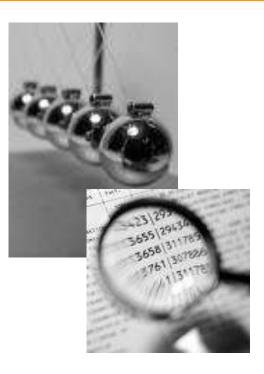
Approach: broad information campaign

- → Place CHP as enabler for climate protection
- Trigger eagerness for knowledge
- Established in Summer 2008

Overcome challenges to implementation - Information (2)

BERLINER *nergie* Agentur

Overcome challenges to implementation – Information (3)



BERLINER *nergie* Agentur

Overcome challenges to implementation - Energy Services

Barriers:

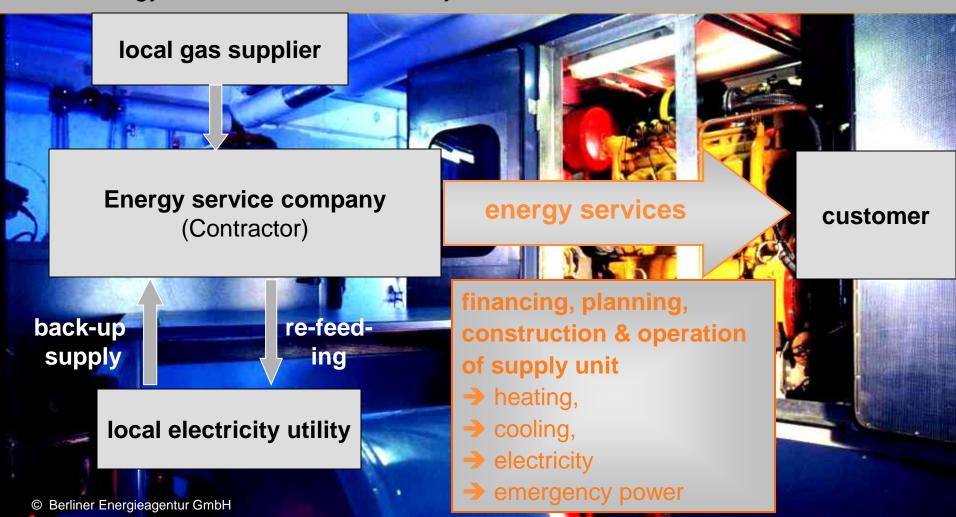
- Lack of capacities
- Lack of information
- Lack of motivation (energy not core business)
- High investment costs

Solution: Energy Services

BERLINER

R nergie AGENTUR

Energy Services – Some typical models


	Energy Supply Contracting (ESC)	Energy Performance Contracting (EPC)	Energy Operation Contracting (EOC)
Client	energy consumer	user of existing units/equipment	user & owner of existing units/equipment
Target	energy supply	realisation of energy saving potentials	economically optimized operation
Services by ESCO	Planning, construction, operation, maintenance, financing	partly renewal (financing incl.) operation & maintenance	operation
re-financing	energy sales	energy savings	operation fee
Risks borne by ESCO	risks of construction, operation, maintenance, finance and purchase	risks of actual energy savings, of O & M	risks of maintenance and replacement investment
economic advantages for client:	avoided investment, purchase/bulk buying advantages, re-allocation of risks	energy savings guaranteed by contract	technical optimization and professional experience of ESCO

BERLINER

nergie Agentur

Energy Services – General Project Scheme

Berlin-Prenzlauer Ber

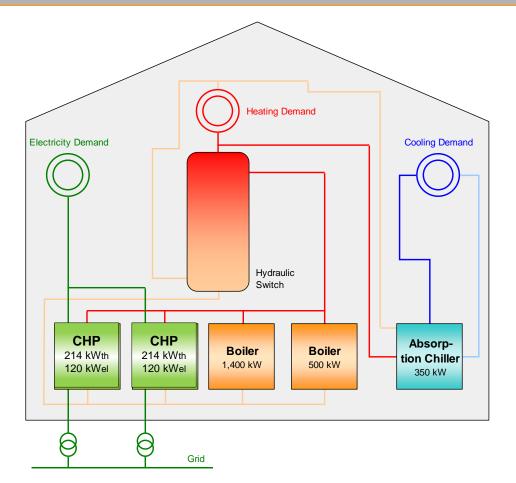
Best Practice – Service complex "Königstadt-Terrassen" (1)

Energy services for trigeneration

- Service and commercial complex,
 25 retail units, 25,300 m²
- 2 natural gas boilers running at low temperature: 1,900 kW
- 2 natural gas operated CHP units each 120 kW_{el}, 214 kW_{th}
- Absorption chiller unit: 350 kW
- Emergency current: 220 kVA
- Start of supply: 1996

BERLINER

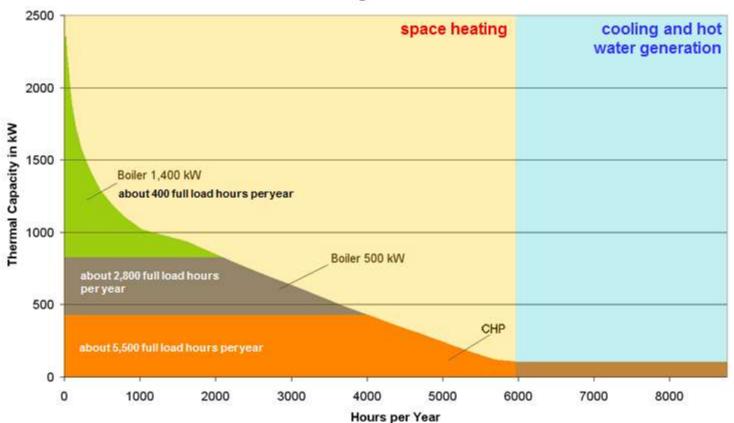
gie AGENTUR



BERLINER *nergie* Agentur

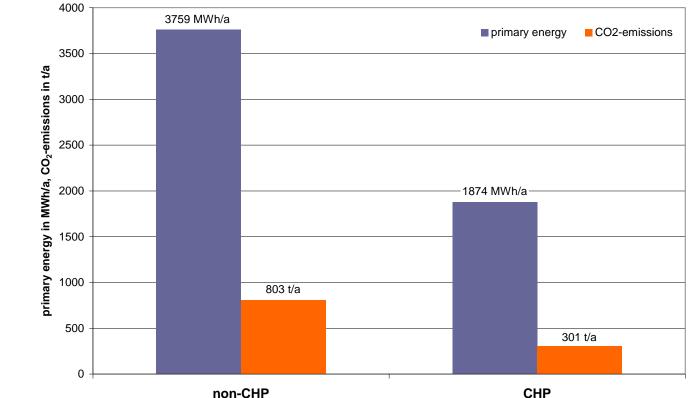
Best Practice - Service complex "Königstadt-Terrassen" (2)

Total energy supply scheme


- base heat load covered by CHP (428 kW_{th}),
- peak heat load covered by boiler (total 2,328 kW_{th})
- summer heat demand (hot water, absorption chiller) covered by CHP
- CHP-electricity used on-site
- surplus CHP-electricity supplied to the grid

BERLINER *nergie* Agentur

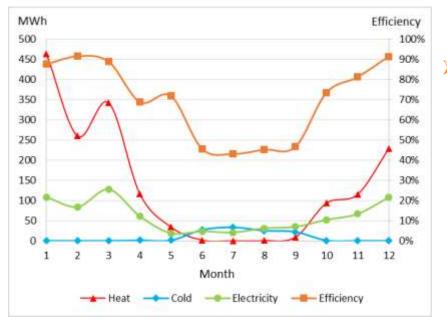
Best Practice – Service complex "Königstadt-Terrassen" (3)


Heating Demand

Best Practice - Service complex "Königstadt-Terrassen" (4)

Energy and emission savings

total primary energy savings: • 1,884 MWh/a • 50.1% total CO₂ emission savings: • 503 t/a • 62.2%



BERLINER *nergie* Agentur

Best Practice – Service complex "Königstadt-Terrassen" (5)

Electricity, heat and cold generation per year

Monthly data for year 2006

Yearly averages (1997 – 2012):	
Sold heat (CHP+Boiler)	1520 MWh
Sold cold (CHP+Boiler)	100 MWh
Electricity generation (CHP)	690 MWh
Gas consumption (CHP+Boiler)	3000 MWh
Efficiency (CHP+Boiler)	75.4%
Operation time (CHP)	2870 h/year

Lessons learned

- Cost-effective cogeneration / trigeneration technology is available
- Wide range of potential users in industry, housing and service sector exists
 - Regulation and information are key to success!
- Need for exact sizing and reliable operation
 - Energy services are key to success!

Conclusions

Trigeneration reduces costs and CO2 emissions

Trigeneration can be effectively integrated in an Energy Services scheme

Trigeneration can be a success factor in many areas of application if proper framework conditions and information are available

Thank You for Your attention! For further information please contact:

www.berliner-e-agentur.de office@berliner-e-agentur.de